Nanostructured Ta3N5 Films as Visible-Light Active Photoanodes for Water Oxidation
نویسندگان
چکیده
Nanostructured Ta3N5 photoanodes (band gap of ∼2.0 eV) were synthesized via a two-step process: first, nanocolumnar Ta2O5 films were deposited by evaporation of tantalum metal in a vacuum chamber in a low pressure oxygen ambient followed by heating in an ammonia gas flow to convert Ta2O5 into orthorhombic Ta3N5. Under Xe lamp irradiation (∼73 mW/cm), a 100 nm nanoporous Ta3N5 electrode achieved an anodic photocurrent of ∼1.4 mA/cm at +0.5 V versus Ag/AgCl in 1 M KOH solution. By comparison, a dense film achieved ∼0.4 mA/cm clearly illustrating the importance of nanostructuring for improving the performance of Ta3N5 photoanodes. However, Ta3N5 films suffered from inherent self-oxidation under light illumination, and application of a cobalt cocatalyst layer was found to improve the stability as well as photocatalytic activity of the Ta3N5 films.
منابع مشابه
Synthesis of Ta3N5 Nanotube Arrays Modified with Electrocatalysts for Photoelectrochemical Water Oxidation
Tantalum nitride (Ta3N5) is a promising material for photoelectrochemical (PEC) water oxidation with a narrow band gap (2.1 eV) that can effectively utilize visible light in the solar spectrum. Ta3N5 nanotube (NT) arrays were synthesized on a Ta foil by electrochemical anodization followed by an ammonia treatment at 800 °C. The photocurrent of nanostructured Ta3N5 was over 3 times higher than t...
متن کاملCarrier dynamics of a visible-light-responsive Ta3N5 photoanode for water oxidation.
The physicochemical properties of a tantalum nitride (Ta3N5) photoanode were investigated in detail to understand the fundamental aspects associated with the photoelectrochemical (PEC) water oxidation. The Ta3N5 thin films were synthesized using DC magnetron sputtering followed by annealing in air and nitridation under ammonia (NH3). A polycrystalline structure with a dense morphology of the mo...
متن کاملTantalum nitride films integrated with transparent conductive oxide substrates via atomic layer deposition for photoelectrochemical water splitting.
Tantalum nitride, Ta3N5, is one of the most promising materials for solar energy driven water oxidation. One significant challenge of this material is the high temperature and long duration of ammonolysis previously required to synthesize it, which has so far prevented the use of transparent conductive oxide (TCO) substrates to be used which would allow sub-bandgap light to be transmitted to a ...
متن کاملSurface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting
Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...
متن کاملTa3N5 nanowire bundles as visible-light-responsive photoanodes.
Solar energy is one of the most promising renewable energy sources to replace fossil fuels. Using sunlight to split water enables the storage of solar energy in the chemical bonds of hydrogen. Since Fujishima and Honda first reported water splitting using a TiO2 electrode, [3] metal oxides have been extensively studied as photoanodes for water oxidation. However, valence bands of oxides have st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012